
Problema Gruppo 4A

L'esperimento di Thomson

Punto 1

Data una semicirconferenza di diametro DA siano E e C, rispettivamente, un punto sulla semicirconferenza e la sua proiezione sul diametro.

Posto $\overline{CE} = h$ e $\overline{CA} = k$, determinare il raggio della semicirconferenza in funzione di h e k.

Punto 2

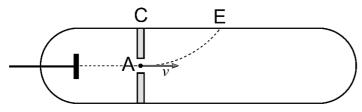
Nel 1897 J.J. Thomson ha effettuato, utilizzando un particolare tubo a vuoto (tubo di Crooks), un esperimento che ha consentito di determinare il rapporto tra carica e massa dell'elettrone $\left(\frac{e}{m}\right)$.

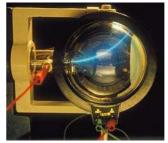
THE

LONDON, EDINBURGH, AND DUBLIN

PHILOSOPHICAL MAGAZINE

AND


JOURNAL OF SCIENCE.


[FIFTH SERIES.]

OCTOBER 1897.

XL. Cathode Rays. By J. J. Thomson, M.A., F.R.S.,
Cavendish Professor of Experimental Physics, Cambridge*.

Nell'esperimento, gli elettroni, preventivamente accelerati da un'opportuna differenza di potenziale, vengono fatti entrare (con velocità v) in una zona ove è presente un campo magnetico uniforme. In questa zona, essi vengono deviati così da descrivere l'arco di circonferenza AE (si veda la figura sottostante).

Fonte: © Andrew Lambert Photography/SPL

Misurando le distanze CA e CE Thomson ha ricavato il raggio dell'orbita:

$$r = \frac{h^2}{2k} + \frac{k}{2}$$
 (ove $h = \overline{CE}$ e $k = \overline{CA}$)

Determinare quale direzione deve avere il campo magnetico affinché la traiettoria sia circolare, spiegando perché tale traiettoria risulta circolare e quale verso deve avere il campo magnetico affinché la deviazione sia quella indicata in figura. Si trascuri l'effetto della gravitazione.

Verificare successivamente che $\frac{e}{m}$ = $\frac{v}{B\,r}$, indicando con B il modulo del vettore campo magnetico. In particolare, se $v=3.7\cdot 10^7 \frac{\rm m}{\rm s}$, $B=2.6~\rm mT$, $h=6.7~\rm cm$ e $k=3.5~\rm cm$, ricavare il valore di $\frac{e}{m}$ con le corrette unità di misura e cifre significative.

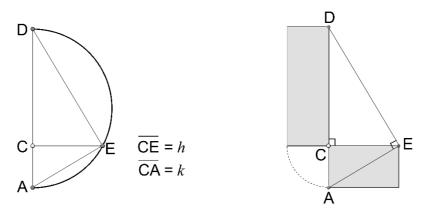
In una prima fase l'elettrone viene accelerato da una differenza di potenziale ΔV , entrando così con velocità v nella zona ove presente il campo magnetico: ricavare la velocità in funzione di ΔV e del rapporto $\frac{e}{m}$.

Si discuta, inoltre, come varierebbe la traiettoria al variare della direzione del campo magnetico.

Punto 3

Avendo stabilito nella relazione $\frac{e}{m}=\frac{v}{B\,r}$ che r e B sono inversamente proporzionali, ovvero che $B\,r=\alpha$, dove α è una costante, e ricordando che $r=\frac{h^2}{2k}+\frac{k}{2}$, verificare che l'andamento di h al variare di B è del tipo $h=\sqrt{\frac{2\alpha k-Bk^2}{B}}$.

Punto 4


Posto $\alpha=1$ e k=2 studiare la funzione $y=\sqrt{\left|\frac{4-4x}{x}\right|}$ evidenziando in particolare le discontinuità, i punti di non derivabilità, ed eventuali massimi, minimi e flessi.

Nota: $\alpha=1$ non è compatibile con il rapporto e/m dell'elettrone ma si riferisce a particella più pesante, quale ad esempio uno ione di monossido di carbonio (J. J. Thomson, Phil. Mag. Series 6, 1912, 24, 209).

Soluzione Problema Gruppo 4A

Punto 1

Applicando il secondo teorema di Euclide al triangolo AED, rettangolo in E,

si ottiene la proporzione


$$\overline{DC}:\overline{EC}=\overline{EC}:\overline{CA}$$

Sostituendo i simboli si ha:

$$(2r - k): h = h: k$$
$$2r - k = \frac{h^2}{k}$$
$$r = \frac{h^2}{2k} + \frac{k}{2}$$

Punto 2

Il campo \vec{B} deve essere uscente dal foglio e perpendicolare al foglio stesso. In tal modo la forza di Lorentz, che il campo \vec{B} produce sulla carica negativa dell'elettrone in moto, essendo perpendicolare sia al vettore velocità che al vettore campo magnetico, è un vettore che giace sul piano del foglio e diretta come in figura

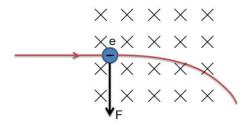
La forza di Lorentz, essendo sempre perpendicolare alla velocità, produce su di essa solo accelerazione centripeta. Ne segue che il moto dell'elettrone è circolare uniforme e devia come mostrato in figura.

Poiché la forza di Lorentz agisce come una forza centripeta, si può scrivere:

$$evB = \frac{mv^2}{r}$$
 \Leftrightarrow $\frac{e}{m} = \frac{v}{Br}$

Con i valori di v, B, h e k forniti dalla traccia si ha:

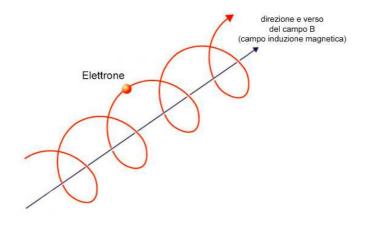
$$r = \frac{h^2}{2k} + \frac{k}{2} = 8.1 \cdot 10^{-2} \,\mathrm{m}$$


$$\frac{e}{m} = \frac{3.7 \cdot 10^7 m/s}{2.6 \cdot 10^{-3} \ T \cdot 8.1 \cdot 10^{-2} \ m} = 1.8 \cdot 10^{11} \ \text{C/kg}$$

Nella fase in cui l'elettrone accelera sotto l'effetto della differenza di potenziale ΔV , si può applicare il principio di conservazione dell'energia. Ne segue che:

$$\frac{1}{2}mv^2 = e\Delta V \qquad \Rightarrow \qquad v = \sqrt{\frac{2e\Delta V}{m}} = \sqrt{2\left(\frac{e}{m}\right)\Delta V}$$

Variando la direzione del campo magnetico possono verificarsi le seguenti situazioni:


a) Se \vec{B} è entrante nel foglio e perpendicolare al foglio stesso, il vettore forza di Lorentz continua giacere sul piano del foglio e ad imprimere all'elettrone un moto circolare uniforme che però si sviluppa in verso orario.

b) Se \vec{B} è obliquo rispetto al foglio, il vettore velocità ha una componente v \perp perpendicolare al campo ed una componente v $_{/\!\!/}$ parallela al campo.

In questa situazione la forza di Lorentz è perpendicolare a v^{\perp} ed imprime un moto circolare uniforme che si sviluppa su un piano obliquo rispetto al foglio. Questo moto circolare si compone con un moto rettilineo uniforme con velocità v_{ℓ} nella direzione del campo.

Tale composizione di moti produce un moto elicoidale che si sviluppa in un verso o nel verso opposto a secondo del verso del campo magnetico.

<u>Punto 3</u>

Sostituendo $r = \frac{h^2}{2k} + \frac{k}{2}$ e successivamente $r = \frac{\alpha}{B}$ nell'espressione $\frac{e}{m} = \frac{V}{r \cdot B}$ si ottiene:

$$\frac{\alpha}{R} = \frac{h^2}{2k} + \frac{k}{2}$$

Da cui si ricava

$$\frac{h^2}{2k} = \frac{\alpha}{B} - \frac{k}{2}$$

$$h^2 = \frac{2k\alpha}{B} - k^2 = \frac{2k\alpha - k^2B}{B}$$

Per estrarre la radice quadrata occorre verificare la positività di $\frac{2k\alpha-k^2B}{B}$ $\begin{cases} 2k\alpha-k^2B>0 &\Leftrightarrow \begin{cases} k(2\alpha-kB)>0\\ B>0 \end{cases} \end{cases}$

$$\begin{cases} 2k\alpha - k^2B > 0 \\ B > 0 \end{cases} \Leftrightarrow \begin{cases} k(2\alpha - kB) > 0 \\ B > 0 \end{cases}$$

Risulta B>0 perché modulo del campo magnetico e k>0 in quanto misura del segmento \overline{CA} . La prima disequazione si ricuce a:

$$2\alpha - kB \ge 0$$

$$2rB - kB \ge 0$$

$$B(2r - k) \ge 0$$

$$(2r - k) \ge 0 \Leftrightarrow 2r = k$$

Questa disuguaglianza è positiva se 2r è l'ipotenusa e k il cateto dello stesso triangolo. Questa affermazione coincide, con la situazione sperimentale, che la traiettoria degli elettroni intercetta la parete del tubo a vuoto (esistenza del punto $E \Rightarrow$ esistenza del triangolo con vertici AED). Sotto queste condizioni, possiamo porre:

$$h = \sqrt{\frac{2k\alpha - k^2B}{B}}$$

Punto 4

Studiamo la seguente funzione:

$$y = \sqrt{\left|\frac{4 - 4x}{x}\right|}$$

Dominio:

$$D \equiv \mathbb{R} - \{0\}$$

Positività:

$$f(x) \ge 0 \quad \forall x \in D$$

$$\lim_{x \to \pm \infty} \sqrt{\left| \frac{4 - 4x}{x} \right|} = +2$$

$$\lim_{x \to 0} \sqrt{\left| \frac{4 - 4x}{x} \right|} = +\infty$$

Per x = 0 la funzione presenta una discontinuità di II specie.

Lo studio della derivata prima si può eseguire distinguendo i casi di positività del termine in valore assoluto.

$$f(x) = \begin{cases} 2\sqrt{\frac{x-1}{x}} & x < 0 \ \forall \ x \ge 1 \\ 2\sqrt{\frac{1-x}{x}} & 0 < x < 1 \end{cases}$$
$$f'(x) = \begin{cases} \frac{1}{x^2}\sqrt{\frac{x}{x-1}} & x < 0 \ \forall \ x > 1 \\ -\frac{1}{x^2}\sqrt{\frac{x}{1-x}} & 0 < x < 1 \end{cases}$$

Il dominio della derivata prima non comprende il punto x=1 in quanto esso annulla il denominatore, pertanto occorre calcolare i limiti destro e sinistro di f'(x) per $x \to 1$.

$$\lim_{x \to 1^{+}} \frac{1}{x^{2}} \sqrt{\frac{x}{x - 1}} = +\infty$$

$$\lim_{x \to 1^{-}} \frac{1}{x^{2}} \sqrt{\frac{x}{x - 1}} = -\infty$$

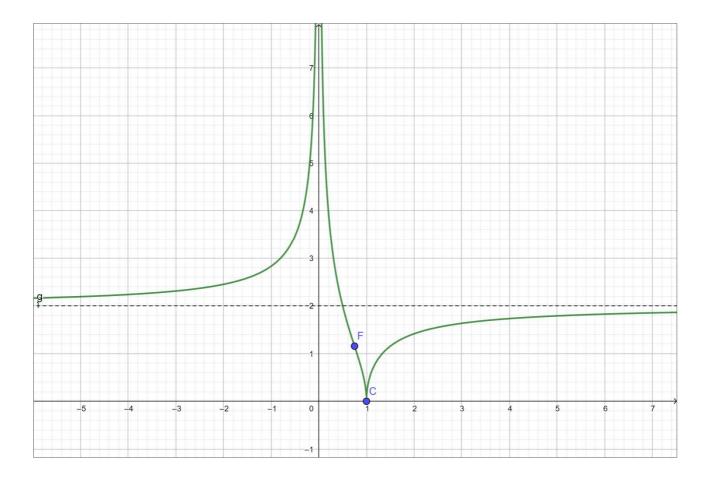
Il valore della funzione in x = 1 è f(1) = 0.

quindi il punto $\mathcal{C}(1,0)$ è un punto di non derivabilità e in particolare una cuspide.

Il segno della derivata prima è

$$f'(x) > 0 \text{ per } x < 0 \lor x > 1$$

 $f'(x) < 0 \text{ per } 0 < x < 1$


Il punto C è anche un punto di minimo assoluto essendo la funzione sempre positiva o nulla.

$$f''(x) = \begin{cases} \frac{-4x+3}{2x^2(1-x)^2} \sqrt{\frac{x-1}{x}} & x < 0 \ \forall \ x > 1 \\ \frac{4-3x}{2x^2(1-x)^2} \sqrt{\frac{1-x}{x}} & 0 < x < 1 \end{cases}$$
$$f''(x) > 0 \text{ per } x < 0 \ \forall \ 0 < x < \frac{3}{4}$$
$$f''(x) > 0 \text{ per } \frac{3}{4} < x < 1 \ \forall \ x > 1$$

f''(x) si annulla e cambia segno in $x = \frac{3}{4}$,

$$f\left(\frac{3}{4}\right) = \frac{2}{3}\sqrt{3} \simeq 1,15$$

Pertanto, f(x) presenta un punto di flesso in $F\left(\frac{3}{4}, \frac{2\sqrt{3}}{3}\right)$.

Griglia di Valutazione Problema Gruppo 4A

Indicatori	Livello	Descrittori	Punti	Evidenze	Punteggio
					massimo
Analizzare Esaminare la situazione fisica proposta formulando le ipotesi esplicative attraverso modelli o analogie o leggi.	L1 L2	Esamina la situazione fisica proposta in modo superficiale e/o frammentario formulando ipotesi esplicative non adeguate senza riconoscere modelli o analogie o leggi Esamina la situazione fisica proposta in modo parziale formulando ipotesi esplicative non del tutto adeguate e riconoscendo modelli o analogie o leggi non sempre appropriate Esamina la situazione fisica proposta in modo quasi completo formulando ipotesi esplicative complessivamente	0 - 5 6 - 12 13 - 19	 (2) Riconosce che deve applicare la forza di Lorentz. (2) Riconosce la necessità di applicare la conservazione dell'energia. (2) Individua le diverse casistiche in merito alla direzione del campo magnetico. 	5 5
	L4	adeguate e riconoscendo modelli o analogie o leggi generalmente appropriate Esamina criticamente la situazione fisica proposta in modo completo ed esauriente formulando ipotesi esplicative adeguate e riconoscendo modelli o analogie o leggi appropriati	20 - 25		
Sviluppare il processo risolutivo Formalizzare situazioni problematiche e applicare i	L1	Formalizza situazioni problematiche in modo superficiale e non applica gli strumenti matematici e disciplinari rilevanti per la loro risoluzione Formalizza situazioni problematiche in	7 – 15	 (1) Applica il teorema di Euclide. (2) Imposta l'uguaglianza derivante tra la forza di Lorentz e la forza centripeta. 	6

	I	T				
concetti e i		modo parziale e applica gli		•	(2) Applica	
metodi		strumenti matematici e			correttamente la	
matematici e		disciplinari in modo non			regola della mano	
gli strumenti		sempre corretto per la			destra.	
disciplinari		loro risoluzione		•	(2) Imposta	
rilevanti per la	L3	Formalizza	16 - 24		correttamente	
loro		situazioni problematiche in			l'equazione e	
risoluzione,		modo quasi completo e			ricava il valore	
eseguendo i		applica gli strumenti			della velocità.	
calcoli		matematici e disciplinari		•	(2) Sviluppa	
necessari.		generalmente corretto per			correttamente i	
		la loro risoluzione			diversi casi	
	L4	Formalizza	25 - 30		derivanti dalla	
		situazioni problematiche in			direzione del	
		modo completo ed			campo magnetico	
		esauriente e applica gli			rispetto alla	
		strumenti matematici e			velocità.	
		disciplinari corretti ed				
		ottimali per la			(3) Esegue correttamente il	
		loro risoluzione				
		loro risolazione			calcolo per	
					l'espressione della	
					funzione inversa.	
				•	(4) Studia in	
					maniera corretta	
					ed esauriente la	
					funzione proposta.	
		, , , , , , ,				_
Interpretare,	L1	Interpreta e/o elabora i dati	0 - 5	•	(2) Esegue	5
rappresentare,		proposti, anche di natura			un'analisi	
elaborare i		sperimentale, in modo			dimensionale	
dati		superficiale non			dell'uguaglianza.	
		verificandone la pertinenza		•	(4) Traccia il	
Interpretare		al modello scelto			grafico della	
e/o elaborare i	L2	Interpreta e/o elabora i dati	6 – 12		funzione in	
dati proposti		proposti, anche di natura			maniera completa	
e/o ricavati,		sperimentale, in modo			e precisa.	
anche di		parziale verificandone la		•	(4) Individua	
natura		pertinenza al modello scelto			correttamente i	
sperimentale,		in modo non sempre			punti notevoli	
verificandone		corretto			della funzione.	
la pertinenza	L3	Interpreta e/o elabora i dati	13 – 19			
al modello		proposti, anche di natura				
scelto.		sperimentale, in modo				
Rappresentare		completo verificandone la				
	1	· · ·	<u> </u>			

o collogaro i		pertinenza al modello scelto				
e collegare i dati		in modo corretto				
adoperando i	L4	Interpreta e/o elabora i dati	20 – 25			
necessari	L4		20 – 25			
codici grafico-		proposti, anche di natura sperimentale, in modo				
simbolici.		completo ed esauriente				
Simbolici.		verificandone la pertinenza				
		al modello scelto in modo				
		corretto ed ottimale				
Argomentare	L1		0 - 4	_	(1) Giustifica	4
Argomentare	LI	Descrive il processo risolutivo adottato in modo	0-4	•	` '	4
Deserius :					adeguatamente la	
Descrivere il		superficiale e comunica con			possibilità di	
processo		un linguaggio specifico non appropriato i risultati			applicare il	
risolutivo		•••			teorema di	
adottato, la		ottenuti non valutando la			Euclide.	
strategia		coerenza con la situazione		•	(2) Giustifica che la	
risolutiva e i	1.2	problematica proposta	F 40		forza centripeta è	
passaggi	L2	Descrive il processo	5 – 10		data dalla forza di	
fondamentali.		risolutivo adottato in modo			Lorentz.	
Comunicare i		parziale e comunica con un		•	(3) Giustifica	
risultati		linguaggio specifico non			adeguatamente il	
ottenuti		sempre appropriato i			passaggio relativo	
valutandone la		risultati ottenuti			all'estrazione di	
coerenza con		valutandone solo in parte la			radice.	
la situazione		coerenza con la situazione		•	(4) Giustifica	
problematica		problematica proposta	44 40		puntualmente i	
proposta.	L3	Descrive il processo	11 – 16		risultati ottenuti	
		risolutivo adottato in modo			nello studio di	
		completo e comunica con			funzione.	
		un linguaggio specifico				
		appropriato i risultati				
		ottenuti valutandone nel				
		complesso la coerenza con				
		la situazione problematica				
		proposta	47 20			
	L4	Descrive il processo	17 – 20			
		risolutivo adottato in modo				
		completo ed esauriente e				
		comunica con un linguaggio				
		specifico appropriato i				
		risultati ottenuti e ne valuta				
		la coerenza con la situazione				
		problematica proposta in				
		modo ottimale				

TOTALE		